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The paper gives a review of the application of fuzzy set ideas in quantum logics. 
After a brief introduction to the fuzzy set theory, the historical development of 
the main attempts to utilize fuzzy set ideas in quantum logics are presented. 
Results of investigations of all major researchers (except the Italian group 
discussed elsewhere), who work or worked in the field, are discussed. 

1. INTRODUCTION 

Fuzzy set theory is a very young branch of mathematics. It is only 27 
years old, so it is less than half the age of quantum mechanics. Moreover, 
despite the fact that there are more than 20,000 people all over the world 
working in this field and several international journals devoted to it, fuzzy 
set theory is still fighting for its proper evaluation by traditionally oriented 
mathematicians. Therefore, it is not surprising that the possibility of 
applying fuzzy set theory in the foundations of quantum mechanics is far 
from being widely recognized. Nevertheless, I was able to collect data 
about more than 100 papers written on this subject by the members of two 
large groups of researchers: the Slovak group, consisting of 15 persons, and 
the Italian group consisting of 7 persons, and also several individuals: 
Robin Giles, the late Wawrzyniec Guz, myself, and also some other 
researchers who are not continuously active in the field. In the present 
paper, after short introduction to the fuzzy set theory, I review papers in 
which the notion of a fuzzy set is used explicitly, i.e., papers of the Slovak 
group, Robin Giles, and myself, as well as some older and recent papers of 
other researchers who work in the field occasionally. Review of achieve- 
ments of the Italian group is left to Cattaneo (1993). 
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2. FUZZY SETS 

In the so-called naive set theory (which, I dare say, is sufficient for all 
physical purposes) the notion of a set is a primitive notion. Any specific set, 
e.g., the set of members of the International Quantum Structures Association, 
is defined by a predicate which unambiguously divides all objects into two 
classes: objects that belong to the set, and objects that do not belong to the 
set and form its complement. However, the opposite is not true: there are 
predicates which are not precise enough to define a set unambiguously. For 
example, let us try to define a set consisting of people interested in quantum 
structures, or a set consisting of ripe apples. Such a situation is encountered 
even in traditional mathematics: please ask someone to mark on the real 
line sets of numbers defined by predicates: close to zero, approximately 
equal to ten, or much bigger than one. Of course, in any such situation it is 
possible to draw in a more or less arbitrary way a sharp borderline by 
saying, for example, "the set A of numbers much bigger than one consists, 
by definition, of numbers bigger than, or equal to 10." But then what 
about 9.999999? And why should 10, not 8, 13, or 100 mark the borderline? 
Moreover, most probably everyone would agree that 100sA while 2r 
but what about intermediate numbers? Does the number 5 belong to A or 
not, and if not, does it belong to the complement of A? 

Such considerations led Zadeh (1965) to introduce the notion of a 
fuzzy set d as being characterized by a membership function #~, whose 
value #d(x)s[0 ,  1] defines the degree of membership of x in d .  

Remarks 

1. Throughout the paper capital script letters denote genuine fuzzy 
sets as well as traditional (crisp) sets, which are special cases of fuzzy sets. 
Capital italic letters are reserved for crisp sets. 

2. The notion of a fuzzy set can be introduced formally in an 
axiomatic way by adopting the set of axioms of Zermelo-Fraenkel type 
(Chapin, 1974, 1975) or G6del-Bernays type (Novak, 1980). However, the 
original intuitive approach of Zadeh (1965) seems to be sufficient for the 
purpose of the present paper, as well as for all practical purposes. 

It can be easily noticed (see, e.g., Giles, 1976) that fuzzy sets are 
related to many-valued logics in the same way as traditional sets are related 
to two-valued logic. Precisely: if we apply two-valued logic to evaluate the 
truth-value of a sentence "x belongs to A," the possible truth-values are 
exclusively 0 and 1 and the set A is crisp, while if we apply many-valued 
logic, we obtain a fuzzy set. 

Defining fuzzy sets by their membership functions proved to be very 
effective (some authors even identify these two notions, saying: "a fuzzy set 
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in the universe U is an element of [0, 1] u,,) and allowed Zadeh to define 
equality, inclusion, union, intersection, and complement of  fuzzy sets in the 
following way: 

d = ~  i f f for  all xeU, ~t~(x) = g e ( x )  (1) 

d ~ N '  i f f for  all x~U, lX~/(x) <-#~(x) (2) 

d w ~  =c6' i f f for  all xaU, /~;(x) =max[~t j (x) ,#~(x)]  (3) 

s~'c~N' =cg i f f for  all xeU, ~ ( x )  =min[/~u(x),p~(x)] (4) 

~ 4 ' = N '  i f f for  all x~U, /~(x)  = 1 -#o~,(x) (5) 

The symbols u and c~ are used throughout the paper to denote Zadeh 
union and intersection. However, it should be noticed that if sets ~r and ~J 
are crisp, u and c~ coincide with traditional set-theoretic union and 
intersection. 

As was noticed by Giles (1976), definitions (3) and (4) can be treated 
as generated by connectives "or"  and "and" used by Lukasiewicz (1970) 
already in 1920s in his studies of  multiple-valued logics: 

r(p or q) = max[z(p), z(q)] (6) 

r(p and q) = min[r(p), r(q)] (7) 

where r(p) denotes truth-value of  the sentence p. However, contrary to 
two-valued logic, there is no unique many-valued logic. If we replace 
formulas (6) and (7) by the following formulas, studied as well by 
Lukasiewicz (1970), 

r(p or q) = min[~(p) + r(q), 1] (8) 

r(p and q) = max[r(p) + r(q) - 1, 0], (9) 

we obtain another multiple-valued logic, whose connectives (8) and (9) give 
rise to the following operations on fuzzy sets: 

s~ /@~ = P iff for all xeU, /~,(x) = min[/x~/(x) + #:~(x), I] (10) 

s t @ N ' = < g  i f f for  all xeU, /~,~.(x) =max[/ t~(x)  +#.~(x) - 1,0] ( l l )  

called, respectively, bold union and boM intersection by Giles (1976). Of 
course, as in the case of  Zadeh operations, Giles union and intersection 
coincide with set-theoretic operations when sets sJ  and ~ are crisp. 

Both standard (Zadeh) and bold (Giles) union and intersection com- 
bined with the standard fuzzy complement (5) fulfill De Morgan's laws. Of  
course, since there are infinitely many pairs of many-valued connectives 
with this feature, accordingly there are infinitely many dual pairs of fuzzy 
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set unions and intersections. The majority of studied fuzzy set operations 
can be obtained pointwisely from the so-called triangular norms (Menger, 
1942; Schweizer and Sklar, 1960), i.e., binary operations T: [0, l] x [0, 1] 
[0, 1] which are commutative, associative, nondecreasing in each compo- 
nent, and such that T(x, 1) = x, and their dual conorms, defined by 

S(x, y) -- 1 -- T( 1 -- x, 1 - y) (12) 

The most important family of triangular norms is the so-called family 
of fundamental triangular norms studied by Frank (1979) and given by 

T~ (x, y) = logs { l + (sX-1)(sY-1)}s-~]- , s~ (0 ,1 )w(1 ,  oo) (13) 

which yields Zadeh and Giles intersections [and also, with the aid of (12), 
unions] as limit cases: 

To(x, y) = lira T,(x, y) = rain(x, y) (14) 
s ~ 0  

T~ (x, y) = lira Ts (x, y) = max(x + y - 1, 0) (15) 
s ~ o o  

As we shall see later, the notion of a general triangular norm has gained 
popularity as the most general tool for expressing the "physical" notion of 
an observable. 

3. FUZZY SET IDEAS IN QUANTUM LOGICS UP TO 1987 

I distinguish the year 1987 because from this year on papers dealing 
with the application of fuzzy set ideas to quantum logics appear continu- 
ously and it is possible to distinguish several definite groups of people 
continuously active in the field. Up to 1987 several papers in which authors 
tried to utilize fuzzy sets in the foundations of quantum mechanics were 
published, but were scattered throughout different, sometimes not well- 
known journals. Moreover, their authors, after publishing one or two 
papers, usually did not come back to this subject. 

3.1. Prehistory 

To the prehistory of attempts to utilize fuzzy set ideas in quantum 
logics I classify papers published before 1965, i.e., before Zadeh introduced 
the notion of a fuzzy set in his historic paper (Zadeh, 1965). This 
classification, made "postfactum," is based on my strong belief that if these 
papers had been published after 1965, fuzzy sets would most probably have 
appeared in them explicitly. 

As already mentioned, Lukasiewicz's many-valued logics form a natu- 
ral logical basis for the fuzzy set theory. Therefore, all work in which the 
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utilization of  many-valued logics in the quantum domain was considered, 
such as Reichenbach (1944), belong to the prehistory of fuzzy quantum logics. 

I mention here also a' short paper by Frink (1938), despite the fact that 
Frink separately describes algebras of propositions generated by 
Lukasiewicz's logic and by the Birkhoff and yon Neumann (1936) logic of  
quantum mechanics. Nevertheless, a short comparison of  the properties of  
different non-Boolean algebras of propositions given by Frink clearly 
shows that the algebra of quantum propositions is more similar to 
gukasiewicz's many-valued logic endowed with connectives (8) and (9), 
now recognized as giving rise to Giles's connectives, than to the algebra of 
propositions of Heyting's logic or Lukasiewicz's logic endowed with con- 
nectives (6) and (7), which give rise to Zadeh connectives. 

3.2. Prugoverzki and Guz 

Strictly speaking, two papers by Prugove~ki (1974, 1975) only partially 
belong to the domain of quantum logics. However, they are the first papers 
known to me in which fuzzy sets were explicitly used in quantum mechan- 
ics. The idea of Prugove6ki consists in the observation that "quantum 
phenomena display diffraction effects, which make their localization with 
absolute certainty within macroscopic regions impossible." From this state- 
ment there follows the basic postulate of Prugove6ki (1974): 

measurement of observables in quantum mechanics yields sample points which 
are normalized fuzzy sets. 

[A fuzzy set d is called normalized if sup #.~(x) = 1.] However, Prugove6ki 
did not explain how these fuzzy sets could be obtained. He postulated only 
that (Definition 2.1. of Prugove6ki, 1974): 

If .~' is the normalized fuzzy set yielded by a measurement of an observable ~, 
then for any Borel set B in N* 

~B #.,~ (x) dm~ (x) 
= , [( 16)] 

p~(m (L+~ #5(x) d~(x)) "2 
where 

m~(a )=[  dx+ Z )~sp({X}) , [(17)] 
J~ ~ S c  yEA ~ 5"p 

is the probability that a very precise measurement immediately following the 
measurement of~ will yield a result within B. (Sc and Sp denote, respectively, 
continuous and point spectrum of c<) 

Later on Prugove6ki broadened this postulate to cover also the case of 
simultaneous measurement of  two and more (even incompatible) observables 
using a kind of probabilistic product of  fuzzy sets: 

~,~ ~(x, y) = ~,~(x) �9 (l 8) 



1696 Pykacz 

He stressed that despite the impossibility of arbitrary precise simultaneous 
measurement of c~ and /~, the formula (18) is operationally well defined 
since the constituents of  the right-hand side product can be independently 
obtained with an arbitrary degree of accuracy. 

Prugove~ki also studied probability measures defined on some specific 
families of fuzzy sets. His conclusion is summarized in the following 
definition (Prugove~ki, 1974, Definition 3.3): 

Let ~ be a family of fuzzy sets in N" which is such that ~;~e~, and that ~ ' e ~  
whenever d e~. A function P(d) on ~ is a probability measure on fuzzy events 
in R" iff it assumes values in [0, 1], and has the following properties: (a) 
p(Nn) = 1; (b) P(d') = 1 - P(d); (c) if all, d 2 . . . .  ~ are disjoint, then 

P(kU_ ~ dk)= ~=, P(dk), [(19)] 

whenever w x. dk also belongs to ~. 

Prugove6ki (1974) did not explain what was meant by disjoint fuzzy sets. 
However, since he used only Zadeh operations, I suppose, that the disjoint- 
ness of two fuzzy sets in Prugove6ki (1974) should be understood as 

#.~/~,~(x) = min[#.~(x),/~(x)] = 0 (20) 

Therefore, it can be inferred from Prugove6ki (1974) that his family of 
fuzzy events ~, in order to make probabilities calculable without any 
restrictions, should be defined by the following conditions (R~ is replaced 
here by an abstract universe U in order to make Prugove~ki's structure 
more similar to recently studied structures): 

(i) U e ~ .  
(ii) d ~  ~ d ' e ~ .  

(iii) W ~ r ~ d j - - ~  ~ ~ W ~ e ~ .  

It is worth mentioning that Prugoveeki (1974) gave an explicit exam- 
ple, extracted from the Hilbert space quantum mechanics, of his probability 
measure on fuzzy events corresponding to measurements of incompatible 
observables. 

In his next paper Prugove~ki (1975) changed the definition of a fuzzy 
event in such a way that it became, in general, not a fuzzy set, but a 
collection of fuzzy sets. This approach, however, seems to be further away 
from the original spirit of  fuzzy set theory, on which this paper is 
concentrated. 

In his later papers, as well as in his book, Prugoveeki (1984) did not 
use explicitly fuzzy sets in Zadeh's sense, since he "did not find Zadeh's 
ideas fruitful" (private communication, 1987), and therefore he changed 
the name "fuzzy phase space" to "stochastic phase space" in his later 
papers. However, he retained and developed the idea that numerical results 
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of measurements in physics should be always considered together with a 
"confidence margin," so they are not mathematical points, but rather fuzzy 
sets. He introduced a notion of "stochastically extended quantum parti- 
cles" which, in some sense, could be visualized as fuzzy sets of Gaussian 
shape. This line of thought was further developed by himself and his 
collaborators (T. Ali, W. Guz), and can be found in papers by Bush 
(1985a,b, 1986), Hsu and Pei (1988), Hsu and Whan (1988), and Hsu 
(1991). 

Two papers by the late Wawrzyniec Guz (1984, 1985) are placed here, 
just after the works of Prugove6ki, because Guz wrote them in Toronto 
inspired personally by Prugove6ki. Nevertheless, the original field of inter- 
est of Guz was quantum logic and these two papers are the first papers 
known to me which can be unambiguously classified as belonging to the 
domain of fuzzy quantum logic. 

Guz (1984) introduced the following notion of a fuzzy a-orthoposet 
[notation as in Pykacz (1992)]: A fuzzy e-orthoposet is a family G of fuzzy 
subsets of a universe U such that: 

(i) G contains the empty set ~ ,  and the universe U. 
(ii) If ~ r  and d ~ ,  then there exists cg~G such that 

#4 = #~ - #~. 
(iii) For every sequence {d~-} in G such that ~ i d i  -< 1, there exists 

~ G such that #.~ = ~ i #~'~' 

Guz (1984) gave several examples of fuzzy a-orthoposets. The follow- 
ing one is the most interesting from the physical point of view. 

Example 1. Let H be a complex Hilbert space and let B(H) be the 
C*-algebra of bounded operators acting on H. Then the family of fuzzy 
subsets of H whose membership functions are defined in the following way: 

#~,(x)=(Ax, x)/ltxll if x # O ,  / ~ ( 0 ) = 0 f o r a l l  xsH, AeB(H) 

(21) 

is a fuzzy e-orthoposet. 
In the same paper Guz (1984) also studied the possibility of the 

physical applications of triangular norms of Menger (1942) and Schweizer 
and Sklar (1960), which, as already mentioned, are now recognized as 
closely connected to fuzzy set operations. 

Guz (1985) studied another family of fuzzy sets, which he called 
statistical (or fuzzy) e-algebra. It was defined with the aid of several 
axioms, but in order to compare this structure with other families of fuzzy 
sets encountered in fuzzy quantum logics, I distinguish here three of them, 
using again the notation of Pykacz (1992). 
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A statistical (fuzzy) o--algebra is a 
universe U satisfying: 

family S of fuzzy subsets of a 

(i) ~ contains the universe U. 
(ii) If d ~ g ,  then d ' ~ g .  
(iii) For any sequence {di}  in N such that ~r  = ~ there exists 

e S such that #~ = ~ ~ #d,. 

Let us note that the first two axioms are the same as in the definition of a 
family of fuzzy events of Prugove6ki (1974) and nearly the same as in the 
definition of fuzzy o--orthoposet of Guz (1984). As we shall see later, they 
also will be the same for all other families of fuzzy sets encountered in 
fuzzy quantum logics, which actually differ because of different versions of 
the third axiom. The statistical o--algebra, however, is more specific because 
of the remaining axioms: 

(iv) If d @ ~  r 13, then there exists x e U such that 

#~,(x) = 1 and #~(x) > 0 (22) 

(v) For each x e U  there exists s J e 5  such that 

#~(x) = 1 and #,~(y) < 1 for all yeU,  y vLx (23) 

(vi) If  #A(X)>0, then there exists one and only one element y e U  
such that # j ( y )  = 1, and #.~(x) = (x :y), where (x :y), called the 
transition prot, qbility from x to y, is defined by 

(x :y) = inf{#.,/(x): d e S ,  #.~(y) = 1} (24) 

Guz (1985) proved that the statistical a-algebra defined by the above 
axioms is an atomistic a-orthoposet satisfying the covering law with respect 
to the standard fuzzy set inclusion (2) as partial order and standard fuzzy 
set complementation (5) as orthocomplementation. Moreover, imitating 
standard quantum logical procedures (e.g., Guz, 1975), he associated with 
his statistical a-algebra an object called phase geometry obtained in a 
following way: 

Two elements x, y e U are called orthogonal and denoted x A_y if there is d e.~g 
such t h a t / ~ ( x )  = 1 and #.~(y) = 0. For any (crisp) subset S of U we define 
S • = {xe U: xA_y for all yeS}  and we wrote S -  instead of S J-a. I f  S -  = S, we 
call the set SA_-closed. The family of all A_-closed subsets of U is called phase 
geometry associated with N. 

Guz proved that for any statistical o--algebra its associated phase geometry 
endowed with the set-theoretic inclusion and complementation is an atom- 
istic, orthocomplete, orthomodular lattice with the covering law holding in 
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it. Later,  applying " fundamenta l  theorem of  projective geometry"  (e.g., 
Varadarajan,  1968; Maeda  and Maeda,  1970), he proved that: 

If N is a statistical a-algebra such that for any pair x,y~ U there is a third 
element zc U, z r x, y such that z~{x, y}-\{x, y} (i.e., z is a superposition of x 
and y), and there are at least four orthogonal elements in U, then there is an 
inner product vector space (V, ( . , .  )) over an involutive division ring D such 
that N can be identified with a a-orthoposet of closed subspaces of V. 

3.3. Giles 

I place Prof. Robin  Giles among  researchers working in the field o f  
fuzzy quan tum logics a l though it is rare that both fuzzy sets and quan tum 
logical notions can be found in the same paper  written by Giles. Therefore,  
in some sense, only the collection o f  Giles's papers (Giles, 1974, 1976, 1977, 
1978, 1982) can be jointly classified as belonging to the domain  of  fuzzy 
quan tum logics. In some papers Giles (1974, 1977, 1978) studied the 
structure of  a formalized physical language and its relation to many-valued 
logic, while in others (Giles, 1976, 1982) he studied mainly relations 
between many-valued logic and fuzzy sets, only occasionally touching 
physical problems. Thus, many-valued logic is a c o m m o n  denomina to r  o f  
what  I call Giles's ,fuzz), quantum logic (FQL) collection of  papers. 

Already in the paper  "A  nonclassical logic for physics" (Giles, 1974), 
he wrote: "the logic Lo~ (i.e., infinite-valued Lukasiewicz logic) plays the 
same role in the dispersive case as the classical propositional calculus" does in 
the case of  a dispersion-free language." Also in this paper  we can find the 
first versions of  the new notion o f  a proposition and the dialogue interpreta- 
tion of  logic, which later appeared in all the other  papers o f  Giles's " F Q L  
collection": " the function o f  a sentence is to be asserted, such an assertion, 
having the effect o f  expressing a bel ief . . . ,  and in practice such a belief may 
be expressed in the form of  a bet. What  is a bet? It is a part icular sort o f  
commitment" (Giles, 1978). 

Thus, "A  proposition is an expression whose assertion entails a definite 
commi tment  on the part  of  a speaker." This gives a "pract ical"  way to 
define the risk value @ )  o f  asserting a proposi t ion P :  "He  who asserts P 
agrees to pay his opponent  $1 if a trial of  P yields the outcome " n o " . , .  the 
risk value ( p )  o f  P for me denotes my expected loss if I assert P . "  

The meaning of  c o m p o u n d  proposi t ions was defined in Giles (1974) in 
the following way: 

He who asserts A ---, B agrees to assert B if his opponent will assert A. 
He who asserts qA agrees to pay $1 to his opponent if he will assert A. 
He who asserts A v B undertakes to assert either A or B at his own choice. 
He who asserts A A B undertakes to assert either A or B at his opponent's 

choice. 
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From these definitions one gets the following rules for calculating risk 
values of compound propositions: 

(P  ~ Q) = sup{0, (O)  - (P)} (25) 

( ~ e )  = 1 - ( P )  (26) 

(P v Q) = inf{(P), (a)} (27) 

( e / x  Q) = sup{(P), (O)} (28) 

It is obvious that after replacing the risk value ( P )  by the truth value 
z(P) = 1 - ( P )  one obtains truth values of compound propositions of an 
infinite-valued logic studied by Lukasiewicz. Now, only one step is needed 
to pass to the fuzzy set theory, and this step was done by Giles in the paper 
"Lukasiewicz logic and fuzzy set theory" (Giles, 1976). This step consisted 
in the observation that/L~/(x), i.e., the grade of membership of an element 
x to a fuzzy set d ,  can be interpreted as the truth value of a proposition 
"x e d , "  i.e., 

kto~ (x) = r("x ~ d " )  = 1 - ( "x  Eag") (29) 

Of course, expression (29) applied to propositions " x ~ d , "  "xear  or 
x ~ , "  and " x e d  and x ~ "  gives, respectively, the Zadeh fuzzy set 
complement (5), union (3), and intersection (4). However, as I already 
mentioned, Giles (1976) noticed that there are also other possible connec- 
tives (8) and (9) in Lukasiewicz many-valued logic which give rise to 
"bold" operations (10) and (1 I) on fuzzy sets. According to my point of 
view, which will be presented in Section 5, these operations are particularly 
well suited for modeling quantum phenomena. 

4. SLOVAK GROUP 

The Slovak group, centered around Prof. Beloslav Rie~an from 
Bratislava, is the largest group of researchers working in the field of fuzzy 
quantum logics. It consists of 13 people (among them one Vietnamese who 
has worked recently in Bratislava), to whom we may add two Czech 
researchers who have touched in their papers the same problems. The 
number of papers written by the Slovak group is really impressive: I was 
able to collect more than 80 papers. Unfortunately, only a minority of 
these papers have appeared in well-known journals of international range 
such as Fuzzy Sets and Systems, Journal of Mathematical Analysis and Its 
Applications, or International Journal of Theoretical Physics. 

The first paper of the Slovak group, entitled "A new approach to some 
notions of statistical quantum mechanics" (Rie6an, 1988), was published in 
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Bulletin pour les Sous-Ensembles Flous et leurs Applications in 1988, but it 
was noted elsewhere (Dvure6enskij and Rie6an, 1991a) that its idea was 
developed already in 1986 and presented at the first IFSA-EC and EURO- 
WG Workshop on Progress in Fuzzy Sets in Europe held in Warsaw in 
autumn 1986 (Rie6an and Dvure~enskij, 1988). The point of departure for 
this paper was the formal similarity between the notion of a state on a 
quantum logic and the notion of a Piasecki P-measure (Piasecki, 1985a,b) 
defined by Piasecki on his soft fuzzy a-algebra. Let us quote here the 
definitions of these notions: 

A soft fuzzy a-algebra [called an F-quantum space by Rie6an (1988)] is 
a family I: of fuzzy subsets of a universe U containing ~ and U, closed 
with respect to the standard fuzzy complementation (5) and countable 
Zadeh unions (3), and not containing the fuzzy set whose membership 
function equals 0.5 everywhere on U. 

A P-measure on a soft fuzzy a-algebra 1: is a mapping p: ~ [ 0 ,  1] 
such that 

(i) p ( d w z r  = 1 for all d e t :  (30) 

(31) 
\ i  / i 

Already in this first paper of the Slovak group Rie6an introduced in an 
obvious way the notion of an observable, "translating" it from traditional 
quantum logic: 

An F-observable defined on an F-quantum space I: (i.e., on a soft 
fuzzy a-algebra) is any mapping Z: ~ ( ~ ) ~  I c such that 

(i) Z(A') = (Z(A))' for every A eN'(N l) (32) 

(ii) if A~e~(~J),  n = l , 2 , . . . ,  and A , ~ A , , , = ~ ,  

then Z ( ~  An) = U (33) 

[The left-hand side complement in (32) is an ordinary set-theoretic comple- 
ment, while the right-hand side complement of (32) is the standard fuzzy 
complement. The same pertains to unions in (33).] 

In subsequent papers (Rie~an and Dvure~enskij, 1988; Dvure6enskij 
and Rie6an, 1988, 1991b; Dvure6enskij and Tirpakov~, 1988) and other 
papers of the Slovak group too numerous to be listed here [cf. the 
bibliographical essay of Cattaneo et al., (n.d.)] this line of investigations 
was continued. Notions of joint observables, sum of observables, compati- 
bility, commensurability, and other notions typical of quantum logic issues 
were introduced and studied in the realm of F-quantum spaces. 
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Dvureaenskij and Chovanec (1988) originated another stream of pa- 
pers based on the notion of a fuzzy quantum space, also called type I fuzzy 
quantum poser (Dvureeenskij and Rieean, 1991a; L~ Bfi Long, n.d.) or 
fuzzy quantum poset (Dvureeenskij and L6 B/t Long, 1991). Fuzzy quantum 
space differs from F-quantum space since it is assumed to be closed not 
with respect to Zadeh unions of arbitrary families of fuzzy sets, but only 
with respect to Zadeh unions of families of parwise orthogonal fuzzy sets 
[also called weakly disjoint sets by Giles (1976) or W-separated sets by 
Piasecki (1985a)], i.e., such fuzzy sets that 

/~(x)  - 1 - / ~ ( x )  =p~,(x) for all x e U  (34) 

which, using Giles's intersection, can be expressed equivalently 

d (3N' = ~ (3#) 

It was noticed by Dure6enskij and Chovanec (1988) that a fuzzy 
quantum space can be thought of as a "fuzzyfication" of the notion of a 
quantum probability space introduced by Suppes (1966) as a family of 
(crisp) sets closed with respect to complementation and countable unions 
of disjoint sets. 

Again in subsequent papers which are too numerous to be listed [but 
can be found, as previously, in Cattaneo et al. (n.d.)], practically all the 
basic quantum logical notions were redefined in such a way that they were 
based on the notion of a fuzzy quantum space instead of traditional 
quantum logic. Also a probability theory for states and observables (e.g., 
laws of large numbers, martingale theorem, ergodic theorem, Radon-  
Nikodym theorem) has been constructed. The structure of fuzzy quantum 
spaces and their fuzzy observables was clarified by Dvure6enskij (n.d.), 
using the Loomis-Sikorski representation theorem, and by Koles~,rovfi, and 
Mesiar (1990; Kolesfirovfi, 1990), using the constructive method. Their 
representation theorems make it possible to obtain in a simple way the 
majority of previously obtained results. 

The notion of a fuzzy quantum space (poset) was further varied 
(Dvure6enskij and Rie~an, 1991a; L~ Bfi Long, n.d.) by assuming that the 
studied structure is closed with respect to Zadeh sums of families of fuzzy 
orthogonal sets: 

d J - v ~  iff /~d~,~(x) <0.5 (35) 

or strongly orthogonal sets: 

d l s N  iff d n ~ = Y 5  (36) 

i.e., simply: disjoint fuzzy sets. 
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The obtained structures were then called, respectively, type H and type 
IIIfuzzy quantum posets, and the latter structure shows some similarity to 
the already mentioned family of fuzzy events of Prugove6ki (1974). Of 
course, again traditional quantum logical notions were "translated" and 
studied within this framework. 

The typical feature of the mentioned papers of the Slovak group is 
that in all considered structures the standard (Zadeh) fuzzy complement 
(5), union (3), and, therefore, also intersection (4) were used. However, the 
standard fuzzy complementation is not an orthocomplementation in any 
family of fuzzy sets partially ordered by the fuzzy set inclusion (2) and 
endowed with Zadeh union and intersection, respectively, as supremum 
and infimum. To see this, it is enough to notice that for any genuine (i.e., 
noncrisp) fuzzy set d 

d w ~ '  # U (37) 

~r ~ '  # ~ (38) 

i.e., neither the law of excluded middle nor the law of contradiction holds 
in such structures. Maybe because of this fact the papers of the Slovak 
group, however very well elaborated mathematically, are very poor in 
physical examples. According to my point of view, the structures become 
more "physically plausible" when Giles operations are used instead of 
Zadeh ones. This is done in the approach which will be presented in the 
next section. However, several of the most recent Slovak papers are based 
on a quite general notion of a triangular norm (Mesiar, 1991, n.d.; 
Kolesfirov~ and Rie6an, n.d.), or on a notion of a general binary operation 
on fuzzy sets (Rie6an, 1992). Such a general approach is very interesting 
since it covers structures obtained with the aid o f  Zadeh as well as of Giles 
operations, and, of course, also other possible specific structures obtained 
with the aid of other fuzzy unions and intersections. Therefore, any result 
obtained within such a general approach is valid in all possible specific 
cases, and such a general approach is a unification of many results obtained 
by the Slovak group and other researchers. 

5. PYKACZ 

My own approach to fuzzy quantum logics began in 1985 when I read 
the first book on fuzzy set theory and I was struck by the transparency and 
beauty of this idea. My previous acquaintance (Pykacz, 1983) with 
Mgczyfiski's Theorem (Mgczyfiski, 1973, 1974) allowed me to notice that 
with the aid of this theorem many quantum logical notions can be 
translated in a straightforward way into the language of fuzzy set theory. 
Indeed, Mgczyfiski's Theorem says that (M~czyfiski, 1973): 
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If L is a quantum logic (i.e., a-orthocomplete orthomodular poset) 
with a full set of states S, then each element a sL  induces a function 
a : S ~ [ 0 ,  1], a_(p)=p(a), for all peS.  The set of all such functions 
L = {a: a eL} satisfies the following 

Orthogonality Postulate: if _a i + _aj < 1 for i -r then there exists b e L  
such that _ b + a j + a 2 + . . . = l .  

_L equipped with natural partial order, a < b ,*~ a(p) < _b(p) for all 
peS,  and complementation a ' =  1 - a ,  is isomorphic to L. 

Conversely, if _L g [0, 1] x is a set of functions for which the Orthogo- 
nality Postulate holds, then it is a quantum logic with respect to natural 
partial order and complementation. 

I noticed (Pykacz, 1987a) that functions a: S-*[0,  1] generated by 
elements of a logic can be immediately used as membership functions 
defining fuzzy subsets of the set of all states S of a physical system. 
Therefore, logics of physical systems can be thought of as families of fuzzy 
subsets of S, whose membership functions satisfy the Orthogonality Postu- 
late. In subsequent papers (Pykacz, 1988, 1989, 1990) the Orthogonality 
Postulate was expressed in terms of the Giles union (10), intersection (11), 
and the standard fuzzy complementation (5), and the definition of a fuzzy 
quantum logic (equivalent, as it was already stated, to traditional quantum 
logic with a full set of probability measures) took the following form 
(Pykacz, 1992): 

A fuzzy quantum logic is any family of fuzzy sets ~ satisfying the 
following conditions: 

(i) 25e~.  
(ii) d ~  ~ d ' ~ .  
(iii) If sets a l l ,  W2 . . . .  are pairwise weakly disjoint [(34), (34')], then 

i #di <- 1, and | i d ; ~  ~. 

We see that only the part of condition (iii) which says that the algebraic 
sum of membership functions of any sequence of pairwise weakly disjoint 
sets does not exceed 1 is not expressed in terms of Giles operations. In fact, 
this condition is neither natural nor easy to be fulfilled, but careful exam- 
ination of the proof of the Mgtczyflski Theorem shows that it is responsible 
for the o--orthocompleteness of the obtained structure, and for the fact, that 
d '  = 1 - sr is an orthocomplementation in ~. Fortunately, my most recent 
results (Pykacz, n.d.-a), based on Mesiar's (n.d.) studies of general structures 
in which specific, Zadeh or Giles, connectives are replaced by general 
triangular norms and conorms [(12), (13)], show that the unnatural 
condition ~ i/~'~ < 1 can be avoided if we add the following requirement: 

(iv) For any d e ~ ,  i f d Q d  = ~ ,  then d = ~ .  
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Or, equivalently: 

(iv') For any d ~ 5, if d ___ d ' ,  then d = ~ .  

This requirement is much more natural, since if elements of a logic are 
interpreted as propositions about a physical system, and partial order and 
orthocomplementation play, respectively, roles of implication and negation, 
then d _~ d '  would mean that a proposition implies its own negation. 

Concluding, we can concisely and uniformly define a fuzzy quantum 
logic as a family of fuzzy sets satisfying the conditions (i), (ii), (iii'), and 
(iv) or (iv'), where the condition (iii') arises from (iii) by dropping the 
requirement ~ / ~ , ,  < 1. Moreover, Mesiar's (n.d.) results indicate that 
fuzzy quantum logics are the only (up to an isomorphism) families of fuzzy 
sets equipped with pointwise-generated fuzzy connectives, which are quan- 
tum logics in the traditional sense. 

Translation of the notion of a quantum logic into the language of 
fuzzy set theory implies changes in the interpretation of some basic entities 
which appear in the quantum logic approach to the foundations of 
quantum mechanics. For example, the number p(a)~[0, 1], p~S, aeL, 
instead of being interpreted as the probability of obtaining a positive result 
in an experiment testing a property a when a physical system is in a state 
p, can be interpreted in the following way (Pykacz, 1987b): 

p(a) = ~ , ( p )  is the grade of membership of the state p to the (in 
general, fuzzy) subset d of S which collects all states for which the 
result of an experiment testing the property a is positive. 

This means that the set d is defined by a (fuzzy) predicate: "a physical 
system has the property a." Equivalently, and according to the very spirit 
of the fuzzy set theory, we can say that 

p(a) = #d(P) is the grade to which a physical system in the state p has 
the property a. 

Continuing this line of thought, we can say that a quantum object, even 
before any experiment or measurement is done, actually "has" all possible 
properties (or all possible values of its observables), each of them to the 
degree allowed by suitable quantum mechanical calculations. Of course, 
before the experiment is completed, this statement belongs to the domain of 
multiple-valued logic. 

Translation of quantum logical notions into the language of fuzzy set 
theory exhibits both striking similarities and remarkable difference between 
logics of quantum and classical systems. In the traditional approach, the 
logic of a classical system is a Boolean algebra of subsets of a phase space 
endowed with set-theoretic operations, while the logic of a quantum system 
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is a lattice of  subspaces (not subsets!) of  a Hilbert space, and it is endowed 
with operations which differ from the set-theoretic ones. In the fuzzy set 
approach, in both cases the logic of  a physical system is a family of fuzzy 
subsets of the set of  all states S, endowed with Giles operations and the 
standard fuzzy complementation (Pykacz, 1987a,b, 1988, 1989, 1990, 1992). 
The difference between classical and quantum systems becomes clear when 
we restrict considerations to subsets of  the set of  all pure states P: logics of  
classical systems are then Boolean algebras of  crisp subsets of  P, while 
logics of  quantum systems unavoidably contain genuine fuzzy (i.e., non- 
crisp) subsets of  P, and are a-or thocomplemented or thomodular  posets 
(Pykacz, 1987a,b, 1988, 1989, 1990, 1992). Moreover,  only within this 
approach is is possible to make a " smooth"  transition from the quantum 
to the classical case by making elements of a logic less and less fuzzy. 

The field of events in classical, i.e., Kolmogorovian,  probability theory 
is a Boolean algebra. It  is replaced by a lattice of  closed subspaces of  a 
Hilbert space or by a general or thomodular  poset of  propositions in 
attempts to build a non-Kolmogorovian probability theory suitable for 
quantum mechanics. The above-mentioned results show that the notion of 
a fuzzy quantum logic can be a starting point for building a unified 
probability theory which could cover both classical and quantum cases. 
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